The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that meets a set of criteria. It starts at the root of the graph and visits all nodes at the current depth level before moving on to the nodes at the next depth level.
Relation between BFS for Graph and Tree traversal:
Breadth-First Traversal (or Search) for a graph is similar to the Breadth-First Traversal of a tree.
The only catch here is, that, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid processing a node more than once, we divide the vertices into two categories:
- Visited and
- Not visited.
A boolean visited array is used to mark the visited vertices. For simplicity, it is assumed that all vertices are reachable from the starting vertex. BFS uses a queue data structure for traversal.
How does BFS work?
Starting from the root, all the nodes at a particular level are visited first and then the nodes of the next level are traversed till all the nodes are visited.
To do this a queue is used. All the adjacent unvisited nodes of the current level are pushed into the queue and the nodes of the current level are marked visited and popped from the queue.
Illustration:
Let us understand the working of the algorithm with the help of the following example.
Step1: Initially queue and visited arrays are empty.
![]()
Queue and visited arrays are empty initially.
Step2: Push node 0 into queue and mark it visited.
![]()
Push node 0 into queue and mark it visited.
Step 3: Remove node 0 from the front of queue and visit the unvisited neighbours and push them into queue.
![]()
Remove node 0 from the front of queue and visited the unvisited neighbours and push into queue.
Step 4: Remove node 1 from the front of queue and visit the unvisited neighbours and push them into queue.
![]()
Remove node 1 from the front of queue and visited the unvisited neighbours and push
Step 5: Remove node 2 from the front of queue and visit the unvisited neighbours and push them into queue.
![]()
Remove node 2 from the front of queue and visit the unvisited neighbours and push them into queue.
Step 6: Remove node 3 from the front of queue and visit the unvisited neighbours and push them into queue.Â
As we can see that every neighbours of node 3 is visited, so move to the next node that are in the front of the queue.![]()
Remove node 3 from the front of queue and visit the unvisited neighbours and push them into queue.Â
Steps 7: Remove node 4 from the front of queue and visit the unvisited neighbours and push them into queue.Â
As we can see that every neighbours of node 4 are visited, so move to the next node that is in the front of the queue.![]()
Remove node 4 from the front of queue and visit the unvisited neighbours and push them into queue.
Now, Queue becomes empty, So, terminate these process of iteration.
Implementation of BFS for Graph using Adjacency List:
C
#include <stdbool.h>#include <stdio.h>#include <stdlib.h>Â
#define MAX_VERTICES 50Â
// This struct represents a directed graph using// adjacency list representationtypedef struct Graph_t {Â
    // No. of vertices    int V;    bool adj[MAX_VERTICES][MAX_VERTICES];} Graph;Â
// ConstructorGraph* Graph_create(int V){Â Â Â Â Graph* g = malloc(sizeof(Graph));Â Â Â Â g->V = V;Â
    for (int i = 0; i < V; i++) {        for (int j = 0; j < V; j++) {            g->adj[i][j] = false;        }    }Â
    return g;}Â
// Destructorvoid Graph_destroy(Graph* g) { free(g); }Â
// Function to add an edge to graphvoid Graph_addEdge(Graph* g, int v, int w){    // Add w to v’s list.    g->adj[v][w] = true;}Â
// Prints BFS traversal from a given source svoid Graph_BFS(Graph* g, int s){    // Mark all the vertices as not visited    bool visited[MAX_VERTICES];    for (int i = 0; i < g->V; i++) {        visited[i] = false;    }Â
    // Create a queue for BFS    int queue[MAX_VERTICES];    int front = 0, rear = 0;Â
    // Mark the current node as visited and enqueue it    visited[s] = true;    queue[rear++] = s;Â
    while (front != rear) {Â
        // Dequeue a vertex from queue and print it        s = queue[front++];        printf("%d ", s);Â
        // Get all adjacent vertices of the dequeued        // vertex s.        // If an adjacent has not been visited,        // then mark it visited and enqueue it        for (int adjacent = 0; adjacent < g->V;             adjacent++) {            if (g->adj[s][adjacent] && !visited[adjacent]) {                visited[adjacent] = true;                queue[rear++] = adjacent;            }        }    }}Â
// Driver codeint main(){    // Create a graph    Graph* g = Graph_create(4);    Graph_addEdge(g, 0, 1);    Graph_addEdge(g, 0, 2);    Graph_addEdge(g, 1, 2);    Graph_addEdge(g, 2, 0);    Graph_addEdge(g, 2, 3);    Graph_addEdge(g, 3, 3);Â
    printf("Following is Breadth First Traversal "           "(starting from vertex 2) \n");    Graph_BFS(g, 2);    Graph_destroy(g);Â
    return 0;} |
C++
// C++ code to print BFS traversal from a given// source vertexÂ
#include <bits/stdc++.h>using namespace std;Â
// This class represents a directed graph using// adjacency list representationclass Graph {Â
    // No. of vertices    int V;Â
    // Pointer to an array containing adjacency lists    vector<list<int> > adj;Â
public:    // Constructor    Graph(int V);Â
    // Function to add an edge to graph    void addEdge(int v, int w);Â
    // Prints BFS traversal from a given source s    void BFS(int s);};Â
Graph::Graph(int V){Â Â Â Â this->V = V;Â Â Â Â adj.resize(V);}Â
void Graph::addEdge(int v, int w){    // Add w to v’s list.    adj[v].push_back(w);}Â
void Graph::BFS(int s){    // Mark all the vertices as not visited    vector<bool> visited;    visited.resize(V, false);Â
    // Create a queue for BFS    list<int> queue;Â
    // Mark the current node as visited and enqueue it    visited[s] = true;    queue.push_back(s);Â
    while (!queue.empty()) {Â
        // Dequeue a vertex from queue and print it        s = queue.front();        cout << s << " ";        queue.pop_front();Â
        // Get all adjacent vertices of the dequeued        // vertex s.        // If an adjacent has not been visited,        // then mark it visited and enqueue it        for (auto adjacent : adj[s]) {            if (!visited[adjacent]) {                visited[adjacent] = true;                queue.push_back(adjacent);            }        }    }}Â
// Driver codeint main(){    // Create a graph given in the above diagram    Graph g(4);    g.addEdge(0, 1);    g.addEdge(0, 2);    g.addEdge(1, 2);    g.addEdge(2, 0);    g.addEdge(2, 3);    g.addEdge(3, 3);Â
    cout << "Following is Breadth First Traversal "         << "(starting from vertex 2) \n";    g.BFS(2);Â
    return 0;} |
Java
// Java program to print BFS traversal from a given source// vertex. BFS(int s) traverses vertices reachable from s.Â
import java.io.*;import java.util.*;Â
// This class represents a directed graph using adjacency// list representationclass Graph {Â
    // No. of vertices    private int V;Â
    // Adjacency Lists    private LinkedList<Integer> adj[];Â
    // Constructor    Graph(int v)    {        V = v;        adj = new LinkedList[v];        for (int i = 0; i < v; ++i)            adj[i] = new LinkedList();    }Â
    // Function to add an edge into the graph    void addEdge(int v, int w) { adj[v].add(w); }Â
    // prints BFS traversal from a given source s    void BFS(int s)    {        // Mark all the vertices as not visited(By default        // set as false)        boolean visited[] = new boolean[V];Â
        // Create a queue for BFS        LinkedList<Integer> queue            = new LinkedList<Integer>();Â
        // Mark the current node as visited and enqueue it        visited[s] = true;        queue.add(s);Â
        while (queue.size() != 0) {Â
            // Dequeue a vertex from queue and print it            s = queue.poll();            System.out.print(s + " ");Â
            // Get all adjacent vertices of the dequeued            // vertex s.            // If an adjacent has not been visited,            // then mark it visited and enqueue it            Iterator<Integer> i = adj[s].listIterator();            while (i.hasNext()) {                int n = i.next();                if (!visited[n]) {                    visited[n] = true;                    queue.add(n);                }            }        }    }Â
    // Driver code    public static void main(String args[])    {        Graph g = new Graph(4);        g.addEdge(0, 1);        g.addEdge(0, 2);        g.addEdge(1, 2);        g.addEdge(2, 0);        g.addEdge(2, 3);        g.addEdge(3, 3);Â
        System.out.println(            "Following is Breadth First Traversal "            + "(starting from vertex 2)");Â
        g.BFS(2);    }}Â
// This code is contributed by Aakash Hasija |
Python3
# Python3 Program to print BFS traversal# from a given source vertex. BFS(int s)# traverses vertices reachable from s.Â
from collections import defaultdictÂ
Â
# This class represents a directed graph# using adjacency list representationclass Graph:Â
    # Constructor    def __init__(self):Â
        # Default dictionary to store graph        self.graph = defaultdict(list)Â
    # Function to add an edge to graph    def addEdge(self, u, v):        self.graph[u].append(v)Â
    # Function to print a BFS of graph    def BFS(self, s):Â
        # Mark all the vertices as not visited        visited = [False] * (max(self.graph) + 1)Â
        # Create a queue for BFS        queue = []Â
        # Mark the source node as        # visited and enqueue it        queue.append(s)        visited[s] = TrueÂ
        while queue:Â
            # Dequeue a vertex from            # queue and print it            s = queue.pop(0)            print(s, end=" ")Â
            # Get all adjacent vertices of the            # dequeued vertex s.            # If an adjacent has not been visited,            # then mark it visited and enqueue it            for i in self.graph[s]:                if visited[i] == False:                    queue.append(i)                    visited[i] = TrueÂ
Â
# Driver codeif __name__ == '__main__':Â
    # Create a graph given in    # the above diagram    g = Graph()    g.addEdge(0, 1)    g.addEdge(0, 2)    g.addEdge(1, 2)    g.addEdge(2, 0)    g.addEdge(2, 3)    g.addEdge(3, 3)Â
    print("Following is Breadth First Traversal"          " (starting from vertex 2)")    g.BFS(2)Â
# This code is contributed by Neelam Yadav |
C#
// C# program to print BFS traversal from a given source// vertex. BFS(int s) traverses vertices reachable from s.Â
using System;using System.Collections.Generic;using System.Linq;using System.Text;Â
// This class represents a directed graph// using adjacency list representationclass Graph {Â
    // No. of vertices    private int _V;Â
    // Adjacency Lists    LinkedList<int>[] _adj;Â
    public Graph(int V)    {        _adj = new LinkedList<int>[ V ];        for (int i = 0; i < _adj.Length; i++) {            _adj[i] = new LinkedList<int>();        }        _V = V;    }Â
    // Function to add an edge into the graph    public void AddEdge(int v, int w)    {        _adj[v].AddLast(w);    }Â
    // Prints BFS traversal from a given source s    public void BFS(int s)    {Â
        // Mark all the vertices as not        // visited(By default set as false)        bool[] visited = new bool[_V];        for (int i = 0; i < _V; i++)            visited[i] = false;Â
        // Create a queue for BFS        LinkedList<int> queue = new LinkedList<int>();Â
        // Mark the current node as        // visited and enqueue it        visited[s] = true;        queue.AddLast(s);Â
        while (queue.Any()) {Â
            // Dequeue a vertex from queue            // and print it            s = queue.First();            Console.Write(s + " ");            queue.RemoveFirst();Â
            // Get all adjacent vertices of the            // dequeued vertex s.            // If an adjacent has not been visited,            // then mark it visited and enqueue it            LinkedList<int> list = _adj[s];Â
            foreach(var val in list)            {                if (!visited[val]) {                    visited[val] = true;                    queue.AddLast(val);                }            }        }    }Â
    // Driver code    static void Main(string[] args)    {        Graph g = new Graph(4);        g.AddEdge(0, 1);        g.AddEdge(0, 2);        g.AddEdge(1, 2);        g.AddEdge(2, 0);        g.AddEdge(2, 3);        g.AddEdge(3, 3);Â
        Console.Write("Following is Breadth First "                      + "Traversal(starting from "                      + "vertex 2) \n");        g.BFS(2);    }}Â
// This code is contributed by anv89 |
Javascript
// Javacript Program to print BFS traversal from a given// source vertex. BFS(int s) traverses vertices// reachable from s.          // This class represents a directed graph using// adjacency list representationclass Graph{    // Constructor    constructor(v)    {        this.V = v;        this.adj = new Array(v);        for(let i = 0; i < v; i++)            this.adj[i] = [];    }             // Function to add an edge into the graph    addEdge(v, w)    {        // Add w to v's list.        this.adj[v].push(w);    }             // Prints BFS traversal from a given source s    BFS(s)    {        // Mark all the vertices as not visited(By default        // set as false)        let visited = new Array(this.V);        for(let i = 0; i < this.V; i++)            visited[i] = false;                     // Create a queue for BFS        let queue=[];                     // Mark the current node as visited and enqueue it        visited[s]=true;        queue.push(s);                     while(queue.length>0)        {            // Dequeue a vertex from queue and print it            s = queue[0];            console.log(s+" ");            queue.shift();                             // Get all adjacent vertices of the dequeued            // vertex s.             // If an adjacent has not been visited,            // then mark it visited and enqueue it            this.adj[s].forEach((adjacent,i) => {                 if(!visited[adjacent])                {                    visited[adjacent]=true;                    queue.push(adjacent);                }            });        }    }}     // Driver program to test methods of graph class         // Create a graph given in the above diagram    g = new Graph(4);    g.addEdge(0, 1);    g.addEdge(0, 2);    g.addEdge(1, 2);    g.addEdge(2, 0);    g.addEdge(2, 3);    g.addEdge(3, 3);         console.log("Following is Breadth First Traversal " +                "(starting from vertex 2) ");         g.BFS(2);     // This code is contributed by Aman Kumar. |
Following is Breadth First Traversal (starting from vertex 2) 2 0 3 1
Time Complexity: O(V+E), where V is the number of nodes and E is the number of edges.
Auxiliary Space: O(V)
Problems related to BFS:
What else you can read?Â
- Recent Articles on BFS
- Depth First Traversal
- Applications of Breadth First Traversal
- Applications of Depth First Search
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

[…] and others), develop a mindset to think of an approach revolving around Depth First Search or Breadth-First Search, which is the basic requirement to solve those type of […]
[…] have discussed a DFS based solution to detect cycle in a directed graph. In this post, BFS based solution is discussed.The idea is to simply use Kahn’s algorithm for Topological […]
[…] is unweighted, we can solve this problem in O(V + E) time. The idea is to use a modified version of Breadth-first search in which we keep storing the predecessor of a given vertex while doing the breadth-first […]
[…] Graph BFS, Graph BFS 2, Graph DFS (Related Problems: Problem 1, Problem 2) […]