Double hashing is a collision resolution technique used in hash tables. It works by using two hash functions to compute two different hash values for a given key. The first hash function is used to compute the initial hash value, and the second hash function is used to compute the step size for the probing sequence.
Double hashing has the ability to have a low collision rate, as it uses two hash functions to compute the hash value and the step size. This means that the probability of a collision occurring is lower than in other collision resolution techniques such as linear probing or quadratic probing.
However, double hashing has a few drawbacks. First, it requires the use of two hash functions, which can increase the computational complexity of the insertion and search operations. Second, it requires a good choice of hash functions to achieve good performance. If the hash functions are not well-designed, the collision rate may still be high.
Advantages of Double hashing
- The advantage of Double hashing is that it is one of the best forms of probing, producing a uniform distribution of records throughout a hash table.
- This technique does not yield any clusters.
- It is one of the effective methods for resolving collisions.
Double hashing can be done using :Â
(hash1(key) + i * hash2(key)) % TABLE_SIZEÂ
Here hash1() and hash2() are hash functions and TABLE_SIZEÂ
is size of hash table.Â
(We repeat by increasing i when collision occurs)
Method 1: First hash function is typically hash1(key) = key % TABLE_SIZE
A popular second hash function is hash2(key) = PRIME – (key % PRIME) where PRIME is a prime smaller than the TABLE_SIZE.
A good second Hash function is:Â
- It must never evaluate to zero
- Just make sure that all cells can be probedÂ
Below is the implementation of the above approach:
CPP
/*** Handling of collision via open addressing** Method for Probing: Double Hashing*/Â
#include <iostream>#include <vector>#include <bitset>using namespace std;#define MAX_SIZE 10000001llÂ
class doubleHash {Â
    int TABLE_SIZE, keysPresent, PRIME;    vector<int> hashTable;    bitset<MAX_SIZE> isPrime;Â
    /* Function to set sieve of Eratosthenes. */    void __setSieve(){        isPrime[0] = isPrime[1] = 1;        for(long long i = 2; i*i <= MAX_SIZE; i++)            if(isPrime[i] == 0)                for(long long j = i*i; j <= MAX_SIZE; j += i)                    isPrime[j] = 1;Â
    }Â
    int inline hash1(int value){        return value%TABLE_SIZE;    }         int inline hash2(int value){              return PRIME - (value%PRIME);    }Â
    bool inline isFull(){        return (TABLE_SIZE == keysPresent);    }Â
    public: Â
    doubleHash(int n){        __setSieve();        TABLE_SIZE = n;Â
        /* Find the largest prime number smaller than hash table's size. */        PRIME = TABLE_SIZE - 1;        while(isPrime[PRIME] == 1)            PRIME--;Â
        keysPresent = 0;Â
        /* Fill the hash table with -1 (empty entries). */        for(int i = 0; i < TABLE_SIZE; i++)            hashTable.push_back(-1);     }Â
    void __printPrime(long long n){        for(long long i = 0; i <= n; i++)            if(isPrime[i] == 0)                cout<<i<<", ";        cout<<endl;    }Â
    /* Function to insert value in hash table */    void insert(int value){Â
        if(value == -1 || value == -2){            cout<<("ERROR : -1 and -2 can't be inserted in the table\n");         }Â
        if(isFull()){            cout<<("ERROR : Hash Table Full\n");            return;        }                 int probe = hash1(value), offset = hash2(value); // in linear probing offset = 1;                 while(hashTable[probe] != -1){            if(-2 == hashTable[probe])                                 break;                                 // insert at deleted element's location            probe = (probe+offset) % TABLE_SIZE;        }Â
        hashTable[probe] = value;        keysPresent += 1;    }Â
    void erase(int value){        /* Return if element is not present */        if(!search(value))            return;                     int probe = hash1(value), offset = hash2(value);Â
        while(hashTable[probe] != -1)            if(hashTable[probe] == value){                hashTable[probe] = -2;         // mark element as deleted (rather than unvisited(-1)).                keysPresent--;                return;            }            else                probe = (probe + offset) % TABLE_SIZE; Â
    }Â
    bool search(int value){        int probe = hash1(value), offset = hash2(value), initialPos = probe;        bool firstItr = true;Â
        while(1){            if(hashTable[probe] == -1)                  // Stop search if -1 is encountered.                break;            else if(hashTable[probe] == value)          // Stop search after finding the element.                return true;            else if(probe == initialPos && !firstItr)   // Stop search if one complete traversal of hash table is completed.                return false;            else                probe = ((probe + offset) % TABLE_SIZE); // if none of the above cases occur then update the index and check at it.Â
            firstItr = false;        }        return false;    }Â
    /* Function to display the hash table. */    void print(){        for(int i = 0; i < TABLE_SIZE; i++)            cout<<hashTable[i]<<", ";        cout<<"\n";    }Â
};Â
int main(){Â Â Â Â doubleHash myHash(13); // creates an empty hash table of size 13Â
    /* Inserts random element in the hash table */         int insertions[] = {115, 12, 87, 66, 123},         n1 = sizeof(insertions)/sizeof(insertions[0]);         for(int i = 0; i < n1; i++)        myHash.insert(insertions[i]);         cout<< "Status of hash table after initial insertions : "; myHash.print();     Â
    /*     ** Searches for random element in the hash table,    ** and prints them if found.    */         int queries[] = {1, 12, 2, 3, 69, 88, 115},        n2 = sizeof(queries)/sizeof(queries[0]);         cout<<"\n"<<"Search operation after insertion : \n";Â
    for(int i = 0; i < n2; i++)        if(myHash.search(queries[i]))            cout<<queries[i]<<" present\n";     Â
    /* Deletes random element from the hash table. */         int deletions[] = {123, 87, 66},        n3 = sizeof(deletions)/sizeof(deletions[0]);         for(int i = 0; i < n3; i++)        myHash.erase(deletions[i]);Â
    cout<< "Status of hash table after deleting elements : "; myHash.print();         return 0;} |
Python3
from typing import Listimport mathÂ
MAX_SIZE = 10000001Â
class DoubleHash:    def __init__(self, n: int):        self.TABLE_SIZE = n        self.PRIME = self.__get_largest_prime(n - 1)        self.keysPresent = 0        self.hashTable = [-1] * nÂ
    def __get_largest_prime(self, limit: int) -> int:        is_prime = [True] * (limit + 1)        is_prime[0], is_prime[1] = False, False        for i in range(2, int(math.sqrt(limit)) + 1):            if is_prime[i]:                for j in range(i * i, limit + 1, i):                    is_prime[j] = False        for i in range(limit, -1, -1):            if is_prime[i]:                return iÂ
    def __hash1(self, value: int) -> int:        return value % self.TABLE_SIZEÂ
    def __hash2(self, value: int) -> int:        return self.PRIME - (value % self.PRIME)Â
    def is_full(self) -> bool:        return self.TABLE_SIZE == self.keysPresentÂ
    def insert(self, value: int) -> None:        if value == -1 or value == -2:            print("ERROR : -1 and -2 can't be inserted in the table")            return        if self.is_full():            print("ERROR : Hash Table Full")            return        probe, offset = self.__hash1(value), self.__hash2(value)        while self.hashTable[probe] != -1:            if -2 == self.hashTable[probe]:                break            probe = (probe + offset) % self.TABLE_SIZE        self.hashTable[probe] = value        self.keysPresent += 1Â
    def erase(self, value: int) -> None:        if not self.search(value):            return        probe, offset = self.__hash1(value), self.__hash2(value)        while self.hashTable[probe] != -1:            if self.hashTable[probe] == value:                self.hashTable[probe] = -2                self.keysPresent -= 1                return            else:                probe = (probe + offset) % self.TABLE_SIZEÂ
    def search(self, value: int) -> bool:        probe, offset, initialPos, firstItr = self.__hash1(value), self.__hash2(value), self.__hash1(value), True        while True:            if self.hashTable[probe] == -1:                break            elif self.hashTable[probe] == value:                return True            elif probe == initialPos and not firstItr:                return False            else:                probe = (probe + offset) % self.TABLE_SIZE            firstItr = False        return FalseÂ
    def print(self) -> None:        print(*self.hashTable,sep=', ')Â
if __name__ == '__main__':Â Â Â Â myHash = DoubleHash(13)Â
    # Inserts random element in the hash table    insertions = [115, 12, 87, 66, 123]    for insertion in insertions:        myHash.insert(insertion)    print("Status of hash table after initial insertions : ", end="")    myHash.print()Â
    # Searches for random element in the hash table, and prints them if found.    queries = [1, 12, 2, 3, 69, 88, 115]    n2 = len(queries)    print("\nSearch operation after insertion : ")         for i in range(n2):        if myHash.search(queries[i]):            print(queries[i], "present")                 # Deletes random element from the hash table.    deletions = [123, 87, 66]    n3 = len(deletions)         for i in range(n3):        myHash.erase(deletions[i])             print("Status of hash table after deleting elements : ",end='')    myHash.print() |
C#
using System;using System.Collections.Generic;using System.Linq;Â
class doubleHash {Â
    int TABLE_SIZE, keysPresent, PRIME, MAX_SIZE = 10000001;    List<int> hashTable;    bool[] isPrime;Â
    /* Function to set sieve of Eratosthenes. */    void __setSieve()    {        isPrime[0] = isPrime[1] = true;        for (long i = 2; i * i <= MAX_SIZE; i++) {            if (isPrime[i] == false) {                for (long j = i * i; j <= MAX_SIZE;                     j += i) {                    isPrime[j] = true;                }            }        }    }Â
    int hash1(int value) { return value % TABLE_SIZE; }Â
    int hash2(int value) { return PRIME - (value % PRIME); }Â
    bool isFull() { return (TABLE_SIZE == keysPresent); }Â
    public doubleHash(int n)    {        isPrime = new bool[MAX_SIZE + 1];        __setSieve();        TABLE_SIZE = n;Â
        /* Find the largest prime number smaller than hash         * table's size. */        PRIME = TABLE_SIZE - 1;        while (isPrime[PRIME] == true)            PRIME--;Â
        keysPresent = 0;        hashTable = new List<int>();        /* Fill the hash table with -1 (empty entries). */        for (int i = 0; i < TABLE_SIZE; i++)            hashTable.Add(-1);    }Â
    public void __printPrime(long n)    {        for (long i = 0; i <= n; i++)            if (isPrime[i] == false)                Console.Write(i + ", ");        Console.WriteLine();    }Â
    /* Function to insert value in hash table */    public void insert(int value)    {Â
        if (value == -1 || value == -2) {            Console.Write(                "ERROR : -1 and -2 can't be inserted in the table\n");        }Â
        if (isFull()) {            Console.Write("ERROR : Hash Table Full\n");            return;        }Â
        int probe = hash1(value),            offset            = hash2(value); // in linear probing offset = 1;Â
        while (hashTable[probe] != -1) {            if (-2 == hashTable[probe])                break; // insert at deleted element's                       // location            probe = (probe + offset) % TABLE_SIZE;        }Â
        hashTable[probe] = value;        keysPresent += 1;    }Â
    public void erase(int value)    {        /* Return if element is not present */        if (!search(value))            return;Â
        int probe = hash1(value), offset = hash2(value);Â
        while (hashTable[probe] != -1)            if (hashTable[probe] == value) {                hashTable[probe]                    = -2; // mark element as deleted (rather                          // than unvisited(-1)).                keysPresent--;                return;            }            else                probe = (probe + offset) % TABLE_SIZE;    }Â
    public bool search(int value)    {        int probe = hash1(value), offset = hash2(value),            initialPos = probe;        bool firstItr = true;Â
        while (true) {            if (hashTable[probe]                == -1) // Stop search if -1 is encountered.                break;            else if (hashTable[probe]                     == value) // Stop search after finding                               // the element.                return true;            else if (probe == initialPos                     && !firstItr) // Stop search if one                                   // complete traversal of                                   // hash table is                                   // completed.                return false;            else                probe = ((probe + offset)                         % TABLE_SIZE); // if none of the                                        // above cases occur                                        // then update the                                        // index and check                                        // at it.Â
            firstItr = false;        }        return false;    }Â
    /* Function to display the hash table. */    public void print()    {        for (int i = 0; i < TABLE_SIZE; i++)            Console.Write(hashTable[i] + ", ");        Console.Write("\n");    }}Â
public class Program {Â Â Â Â static void Main()Â Â Â Â {Â Â Â Â Â Â Â Â doubleHash myHash = new doubleHash(Â Â Â Â Â Â Â Â Â Â Â Â 13); // creates an empty hash table of size 13Â
        /* Inserts random element in the hash table */Â
        int[] insertions = { 115, 12, 87, 66, 123 };        int n1 = insertions.Length;Â
        for (int i = 0; i < n1; i++)            myHash.insert(insertions[i]);Â
        Console.Write(            "Status of hash table after initial insertions : ");        myHash.print();Â
        /*        ** Searches for random element in the hash table,        ** and prints them if found.        */Â
        int[] queries = { 1, 12, 2, 3, 69, 88, 115 };        int n2 = queries.Length;Â
        Console.Write(            "\n"            + "Search operation after insertion : \n");Â
        for (int i = 0; i < n2; i++)            if (myHash.search(queries[i]))                Console.Write(queries[i] + " present\n");Â
        /* Deletes random element from the hash table. */Â
        int[] deletions = { 123, 87, 66 };        int n3 = deletions.Length;Â
        for (int i = 0; i < n3; i++)            myHash.erase(deletions[i]);Â
        Console.Write(            "Status of hash table after deleting elements : ");        myHash.print();    }} |
Javascript
// JS codeconst MAX_SIZE = 10000001;Â
// Set sieve of Eratostheneslet isPrime = new Array(MAX_SIZE).fill(0);isPrime[0] = isPrime[1] = 1;for (let i = 2; i * i <= MAX_SIZE; i++) {Â Â if (isPrime[i] === 0) {Â Â Â Â for (let j = i * i; j <= MAX_SIZE; j += i) {Â Â Â Â Â Â isPrime[j] = 1;Â Â Â Â }Â Â }}Â
// Create DoubleHash Classclass DoubleHash {Â Â constructor(n) {Â Â Â Â this.TABLE_SIZE = n;Â Â Â Â this.PRIME = this.TABLE_SIZE - 1;Â Â Â Â while (isPrime[this.PRIME] === 1) {Â Â Â Â Â Â this.PRIME--;Â Â Â Â }Â Â Â Â this.keysPresent = 0;Â Â Â Â this.hashTable = new Array(this.TABLE_SIZE).fill(-1);Â Â }Â Â isFull(){Â Â return this.TABLE_SIZE==this.keysPresent;Â Â }Â Â Â hash1(value) {Â Â Â Â return value % this.TABLE_SIZE;}Â
 hash2(value) {    return this.PRIME - (value % this.PRIME);}Â
  // Function to print prime numbers  __printPrime(n) {    for (let i = 0; i <= n; i++) {      if (isPrime[i] === 0) {        console.log(i + ", ");      }    }    console.log("\n");  }Â
  // Function to insert value in hash table  insert(value) {    if (value === -1 || value === -2) {      console.log("ERROR : -1 and -2 can't be inserted in the table\n");    }    if (this.isFull()) {      console.log("ERROR : Hash Table Full\n");      return;    }    let probe = this.hash1(value),      offset = this.hash2(value); // in linear probing offset = 1;Â
    while (this.hashTable[probe] !== -1) {      if (-2 === this.hashTable[probe]) break; // insert at deleted element's location      probe = (probe + offset) % this.TABLE_SIZE;    }Â
    this.hashTable[probe] = value;    this.keysPresent += 1;  }Â
  erase(value) {    // Return if element is not present    if (!this.search(value)) return;Â
    let probe = this.hash1(value),      offset = this.hash2(value);Â
    while (this.hashTable[probe] !== -1) {      if (this.hashTable[probe] === value) {        this.hashTable[probe] = -2; // mark element as deleted (rather than unvisited(-1)).        this.keysPresent--;        return;      } else {        probe = (probe + offset) % this.TABLE_SIZE;      }    }  }Â
  search(value) {    let probe = this.hash1(value),      offset = this.hash2(value),      initialPos = probe;    let firstItr = true;Â
    while (1) {      if (this.hashTable[probe] === -1) break; // Stop search if -1 is encountered.      else if (this.hashTable[probe] === value) return true; // Stop search after finding the element.      else if (probe === initialPos && !firstItr)        return false; // Stop search if one complete traversal of hash table is completed.      else probe = (probe + offset) % this.TABLE_SIZE; // if none of the above cases occur then update the index and check at it.      firstItr = false;    }    return false;  }Â
  // Function to display the hash table.  print() {    for (let i = 0; i < this.TABLE_SIZE; i++) console.log(this.hashTable[i] + ", ");    console.log("\n");  }}Â
// Main functionfunction main() {Â Â let myHash = new DoubleHash(13); // creates an empty hash table of size 13Â
  // Inserts random element in the hash table  let insertions = [115, 12, 87, 66, 123],    n1 = insertions.length;Â
  for (let i = 0; i < n1; i++) myHash.insert(insertions[i]);Â
  console.log("Status of hash table after initial insertions : ");  myHash.print();Â
  // Searches for random element in the hash table, and prints them if found.  let queries = [1, 12, 2, 3, 69, 88, 115],    n2 = queries.length;Â
  console.log("\n" + "Search operation after insertion : \n");Â
  for (let i = 0; i < n2; i++)    if (myHash.search(queries[i])) console.log(queries[i] + " present\n");Â
  // Deletes random element from the hash table.  let deletions = [123, 87, 66],    n3 = deletions.length;Â
  for (let i = 0; i < n3; i++) myHash.erase(deletions[i]);Â
  console.log("Status of hash table after deleting elements : ");  myHash.print();Â
  return 0;}Â
main();Â
// This code is contributed by ishankhandelwals. |
Status of hash table after initial insertions : -1, 66, -1, -1, -1, -1, 123, -1, -1, 87, -1, 115, 12, Search operation after insertion : 12 present 115 present Status of hash table after deleting elements : -1, -2, -1, -1, -1, -1, -2, -1, -1, -2, -1, 115, 12,
Time Complexity:
- Insertion: O(n)
- Search: O(n)
- Deletion: O(n)
Auxiliary Space: O(size of the hash table).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

