Given Adjacency List representation of graph of N vertices from 1 to N, the task is to count the minimum bipartite groups of the given graph.
Examples:
Input: N = 5
Below is the given graph with number of nodes is 5:
Output: 3
Explanation:
Possible groups satisfying the Bipartite property: [2, 5], [1, 3], [4]
Below is the number of bipartite groups can be formed:
Approach:
The idea is to find the maximum height of all the Connected Components in the given graph of N nodes to find the minimum bipartite groups. Below are the steps:
- For all the non-visited vertex in the given graph, find the height of the current Connected Components starting from the current vertex.
- Start DFS Traversal to find the height of all the Connected Components.
- The maximum of the heights calculated for all the Connected Components gives the minimum bipartite groups required.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>using namespace std;// Function to find the height sizeof// the current component with vertex sint height(int s, vector<int> adj[], int* visited){ // Visit the current Node visited[s] = 1; int h = 0; // Call DFS recursively to find the // maximum height of current CC for (auto& child : adj[s]) { // If the node is not visited // then the height recursively // for next element if (visited[child] == 0) { h = max(h, 1 + height(child, adj, visited)); } } return h;}// Function to find the minimum Groupsint minimumGroups(vector<int> adj[], int N){ // Initialise with visited array int visited[N + 1] = { 0 }; // To find the minimum groups int groups = INT_MIN; // Traverse all the non visited Node // and calculate the height of the // tree with current node as a head for (int i = 1; i <= N; i++) { // If the current is not visited // therefore, we get another CC if (visited[i] == 0) { int comHeight; comHeight = height(i, adj, visited); groups = max(groups, comHeight); } } // Return the minimum bipartite matching return groups;}// Function that adds the current edges// in the given graphvoid addEdge(vector<int> adj[], int u, int v){ adj[u].push_back(v); adj[v].push_back(u);}// Drivers Codeint main(){ int N = 5; // Adjacency List vector<int> adj[N + 1]; // Adding edges to List addEdge(adj, 1, 2); addEdge(adj, 3, 2); addEdge(adj, 4, 3); cout << minimumGroups(adj, N);} |
Java
import java.util.*;class GFG{ // Function to find the height sizeof// the current component with vertex sstatic int height(int s, Vector<Integer> adj[], int []visited){ // Visit the current Node visited[s] = 1; int h = 0; // Call DFS recursively to find the // maximum height of current CC for (int child : adj[s]) { // If the node is not visited // then the height recursively // for next element if (visited[child] == 0) { h = Math.max(h, 1 + height(child, adj, visited)); } } return h;} // Function to find the minimum Groupsstatic int minimumGroups(Vector<Integer> adj[], int N){ // Initialise with visited array int []visited= new int[N + 1]; // To find the minimum groups int groups = Integer.MIN_VALUE; // Traverse all the non visited Node // and calculate the height of the // tree with current node as a head for (int i = 1; i <= N; i++) { // If the current is not visited // therefore, we get another CC if (visited[i] == 0) { int comHeight; comHeight = height(i, adj, visited); groups = Math.max(groups, comHeight); } } // Return the minimum bipartite matching return groups;} // Function that adds the current edges// in the given graphstatic void addEdge(Vector<Integer> adj[], int u, int v){ adj[u].add(v); adj[v].add(u);} // Drivers Codepublic static void main(String[] args){ int N = 5; // Adjacency List Vector<Integer> []adj = new Vector[N + 1]; for (int i = 0 ; i < N + 1; i++) adj[i] = new Vector<Integer>(); // Adding edges to List addEdge(adj, 1, 2); addEdge(adj, 3, 2); addEdge(adj, 4, 3); System.out.print(minimumGroups(adj, N));}}// This code is contributed by 29AjayKumar |
Python3
import sys# Function to find the height sizeof# the current component with vertex sdef height(s, adj, visited): # Visit the current Node visited[s] = 1 h = 0 # Call DFS recursively to find the # maximum height of current CC for child in adj[s]: # If the node is not visited # then the height recursively # for next element if (visited[child] == 0): h = max(h, 1 + height(child, adj, visited)) return h# Function to find the minimum Groupsdef minimumGroups(adj, N): # Initialise with visited array visited = [0 for i in range(N + 1)] # To find the minimum groups groups = -sys.maxsize # Traverse all the non visited Node # and calculate the height of the # tree with current node as a head for i in range(1, N + 1): # If the current is not visited # therefore, we get another CC if (visited[i] == 0): comHeight = height(i, adj, visited) groups = max(groups, comHeight) # Return the minimum bipartite matching return groups# Function that adds the current edges# in the given graphdef addEdge(adj, u, v): adj[u].append(v) adj[v].append(u)# Driver code if __name__=="__main__": N = 5 # Adjacency List adj = [[] for i in range(N + 1)] # Adding edges to List addEdge(adj, 1, 2) addEdge(adj, 3, 2) addEdge(adj, 4, 3) print(minimumGroups(adj, N))# This code is contributed by rutvik_56 |
C#
using System;using System.Collections.Generic;class GFG{ // Function to find the height sizeof// the current component with vertex sstatic int height(int s, List<int> []adj, int []visited){ // Visit the current Node visited[s] = 1; int h = 0; // Call DFS recursively to find the // maximum height of current CC foreach (int child in adj[s]) { // If the node is not visited // then the height recursively // for next element if (visited[child] == 0) { h = Math.Max(h, 1 + height(child, adj, visited)); } } return h;} // Function to find the minimum Groupsstatic int minimumGroups(List<int> []adj, int N){ // Initialise with visited array int []visited= new int[N + 1]; // To find the minimum groups int groups = int.MinValue; // Traverse all the non visited Node // and calculate the height of the // tree with current node as a head for (int i = 1; i <= N; i++) { // If the current is not visited // therefore, we get another CC if (visited[i] == 0) { int comHeight; comHeight = height(i, adj, visited); groups = Math.Max(groups, comHeight); } } // Return the minimum bipartite matching return groups;} // Function that adds the current edges// in the given graphstatic void addEdge(List<int> []adj, int u, int v){ adj[u].Add(v); adj[v].Add(u);} // Drivers Codepublic static void Main(String[] args){ int N = 5; // Adjacency List List<int> []adj = new List<int>[N + 1]; for (int i = 0 ; i < N + 1; i++) adj[i] = new List<int>(); // Adding edges to List addEdge(adj, 1, 2); addEdge(adj, 3, 2); addEdge(adj, 4, 3); Console.Write(minimumGroups(adj, N));}} // This code is contributed by Rajput-Ji |
Javascript
<script>// Function to find the height sizeof// the current component with vertex sfunction height(s, adj, visited){ // Visit the current Node visited[s] = 1; var h = 0; // Call DFS recursively to find the // maximum height of current CC adj[s].forEach(child => { // If the node is not visited // then the height recursively // for next element if (visited[child] == 0) { h = Math.max(h, 1 + height(child, adj, visited)); } }); return h;}// Function to find the minimum Groupsfunction minimumGroups(adj, N){ // Initialise with visited array var visited = Array(N+1).fill(0); // To find the minimum groups var groups = -1000000000; // Traverse all the non visited Node // and calculate the height of the // tree with current node as a head for (var i = 1; i <= N; i++) { // If the current is not visited // therefore, we get another CC if (visited[i] == 0) { var comHeight; comHeight = height(i, adj, visited); groups = Math.max(groups, comHeight); } } // Return the minimum bipartite matching return groups;}// Function that adds the current edges// in the given graphfunction addEdge(adj, u, v){ adj[u].push(v); adj[v].push(u);}// Drivers Codevar N = 5;// Adjacency Listvar adj = Array.from(Array(N+1), ()=>Array())// Adding edges to ListaddEdge(adj, 1, 2);addEdge(adj, 3, 2);addEdge(adj, 4, 3);document.write( minimumGroups(adj, N));</script> |
3
Time Complexity: O(V+E), where V is the number of vertices and E is the set of edges.
Auxiliary Space: O(V).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

