Sunday, February 1, 2026
HomeLanguagesSelecting rows in pandas DataFrame based on conditions

Selecting rows in pandas DataFrame based on conditions

Let’s see how to Select rows based on some conditions in Pandas DataFrame.

Selecting rows based on particular column value using '>', '=', '=', '<=', '!=' operator.

Code #1 : Selecting all the rows from the given dataframe in which ‘Percentage’ is greater than 80 using basic method.

Python3


# importing pandas
import pandas as pd

record = {

 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
 'Age': [21, 19, 20, 18, 17, 21],
 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
 'Percentage': [88, 92, 95, 70, 65, 78] }

# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])

print(&quot;Given Dataframe :\n&quot;, dataframe) 

# selecting rows based on condition
rslt_df = dataframe[dataframe['Percentage'] &gt; 80]

print('\nResult dataframe :\n', rslt_df)
RELATED ARTICLES

Most Popular

Dominic
32478 POSTS0 COMMENTS
Milvus
123 POSTS0 COMMENTS
Nango Kala
6849 POSTS0 COMMENTS
Nicole Veronica
11978 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12066 POSTS0 COMMENTS
Shaida Kate Naidoo
6987 POSTS0 COMMENTS
Ted Musemwa
7222 POSTS0 COMMENTS
Thapelo Manthata
6934 POSTS0 COMMENTS
Umr Jansen
6917 POSTS0 COMMENTS