Sunday, February 1, 2026
HomeLanguagesJavascriptTensorflow.js tf.randomGamma() Function

Tensorflow.js tf.randomGamma() Function

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.

The tf.randomGamma() function is used to create a tf.Tensor with values sampled from a gamma distribution.

Syntax:

tf.randomGamma(shape, alpha, beta, dtype, seed)

Parameter: This function accepts three parameters which are illustrated below:

  • shape: An array of integers defining the shape of the output tensor.
  • alpha: The shape parameter of the gamma distribution.
  • beta: It is an optional argument. The inverse scale parameter of the gamma distribution. The default value is 1.
  • dtype: The data type of the output. The values of datatype possible are ‘float32’ or ‘int32’. It is also an optional argument.
  • seed: It is an optional argument. The seed for the random number generator.

Return: It returns tf.Tensor

Example 1:

Javascript




// Importting the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating the tensor with values sampled 
// from a gamma distribution
const x=tf.randomGamma([5], 0);
  
// Printing the tensor
x.print();


Output:

Tensor
    [0, 0, 0, 0, 0]

Example 2:

Javascript




// Importting the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating the tensor with values sampled 
// from a gamma distribution
const x=tf.randomGamma([5], 1);
  
// Printing the tensor
x.print();


Output:

Tensor
    [1.4808178, 1.6668015, 0.9527208, 1.6024575, 1.6021353]

Example 3:

Javascript




// Importting the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating the tensor with values sampled
// from a gamma distribution
const x=tf.randomGamma([2,2], 1);
  
// Printing the tensor
x.print();


Output:

Tensor
    [[0.1157758, 1.4427431],
     [0.4978852, 0.1617882]]

Example 4:

Javascript




// Importting the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating the tensor with values sampled 
// from a gamma distribution
const x=tf.randomGamma([5], 1,2,'int32',98);
  
// Printing the tensor
x.print();


Output:

Tensor
    [0, 1, 4, 0, 1]

Reference:https://js.tensorflow.org/api/latest/#randomGamma

Whether you’re preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, neveropen Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we’ve already empowered, and we’re here to do the same for you. Don’t miss out – check it out now!
RELATED ARTICLES

1 COMMENT

Most Popular

Dominic
32478 POSTS0 COMMENTS
Milvus
124 POSTS0 COMMENTS
Nango Kala
6849 POSTS0 COMMENTS
Nicole Veronica
11979 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12066 POSTS0 COMMENTS
Shaida Kate Naidoo
6987 POSTS0 COMMENTS
Ted Musemwa
7222 POSTS0 COMMENTS
Thapelo Manthata
6934 POSTS0 COMMENTS
Umr Jansen
6918 POSTS0 COMMENTS